adcash

THE HUMAN CIRCULATORY SYSTEM FUNCTINS

Human Circulatory System
Small organisms don’t have a bloodstream, but instead rely on the simple diffusion of materials for transport around their cells. This is OK for single cells, but it would take days for molecules to diffuse through a large animal, so most animals have a circulatory system with a pump to transport materials quickly around their bodies. This is an example of a mass flow system, which means the transport of substances in the flow of a fluid (as opposed to diffusion, which is the random motion of molecules in a stationary fluid). The transport of materials in the xylem and phloem of plants is an other example of mass flow. Mass flow systems work together with the specialized exchange systems (such as lungs, gills and leaves), which we saw in module 1.

Humans have a double circulatory system with a 4-chambered heart. In humans the right side of the heart pumps blood to the lungs only and is called the pulmonary circulation, while the left side of the heart pumps blood to the rest of the body – the systemic circulation. The circulation of blood round the body was discovered by William Harvey in 1628. Until then people assumed that blood ebbed and flowed through the same tubes, because they hadn't seen capillaries.


The human heart has four chambers: two thin-walled atria on top, which receive blood, and  two thick-walled ventricles underneath, which pump blood. Veins carry blood into the atria and arteries carry blood away from the ventricles. Between the atria and the ventricles are atrioventricular valves, which prevent back-flow of blood from the ventricles to the atria. The left valve has two flaps and is called the bicuspid (or mitral) valve, while the right valve has 3 flaps and is called the tricuspid valve. The valves are held in place by valve tendons (“heart strings”) attached to papillary muscles, which contract at the same time as the ventricles, holding the vales closed. There are also two semi-lunar valves in the arteries (the only examples of valves in arteries) called the pulmonary and aortic valves.

The left and right halves of the heart are separated by the inter-ventricular septum. The walls of the right ventricle are 3 times thinner than on the left and it produces less force and pressure in the blood. This is partly because the blood has less far to go (the lungs are right next to the heart), but also because a lower pressure in the pulmonary circulation means that less fluid passes from the capillaries to the alveoli.

The heart is made of cardiac muscle, composed of cells called myocytes. When myocytes receive an electrical impulse they contract together, causing a heartbeat. Since myocytes are constantly active, they have a great requirement for oxygen, so are fed by numerous capillaries from two coronary arteries. These arise from the aorta as it leaves the heart. Blood returns via the coronary sinus, which drains directly into the right atrium.

The Cardiac Cycle

When the cardiac muscle contracts the volume in the chamber decrease, so the pressure in the chamber increases, so the blood is forced out. Cardiac muscle contracts about 75 times per minute, pumping around 75 cm³ of blood from each ventricle each beat (the stroke volume). It does this continuously for up to 100 years. There is a complicated sequence of events at each heartbeat called the cardiac cycle.
Cardiac muscle is myogenic, which means that it can contract on its own, without needing nerve impulses. Contractions are initiated within the heart by the sino-atrial node (SAN, or pacemaker) in the right atrium. This extraordinary tissue acts as a clock, and contracts spontaneously and rhythmically about once a second, even when surgically removed from the heart.

The cardiac cycle has three stages:
1.    Atrial Systole (pronounced sis-toe-lay). The SAN contracts and transmits electrical impulses throughout the atria, which both contract, pumping blood into the ventricles. The ventricles are electrically insulated from the atria, so they do not contract at this time.
2.    Ventricular Systole. The electrical impulse passes to the ventricles via the atrioventricular node (AVN), the bundle of His and the Purkinje fibres. These are specialised fibres that do not contract but pass the electrical impulse to the base of the ventricles, with a short but important delay of about 0.1s. The ventricles therefore contract shortly after the atria, from the bottom up, squeezing blood upwards into the arteries. The blood can't go into the atria because of the atrioventricular valves, which are forced shut with a loud "lub".
3.    Diastole. The atria and the ventricles relax, while the atria fill with blood. The semilunar valves in the arteries close as the arterial blood pushes against them, making a "dup" sound.

The events of the three stages are shown in the diagram on the next page. The pressure changes show most clearly what is happening in each chamber. Blood flows because of pressure differences, and it always flows from a high pressure to a low pressure, if it can. So during atrial systole the atria contract, making the atrium pressure higher than the ventricle pressure, so blood flows from the atrium to the ventricle. The artery pressure is higher still, but blood can’t flow from the artery back into the heart due to the semi-lunar valves. The valves are largely passive: they open when blood flows through them the right way and close when blood tries to flow through them the wrong way.

The PCG (or phonocardiogram) is a recording of the sounds the heart makes. The cardiac muscle itself is silent and the sounds are made by the valves closing. The first sound (lub) is the atrioventricular valves closing and the second (dub) is the semi-lunar valves closing.

The ECG (or electrocardiogram) is a recording of the electrical activity of the heart. There are characteristic waves of electrical activity marking each phase of the cardiac cycle. Changes in these ECG waves can be used to help diagnose problems with the heart.


Comments

  1. IF THERE IS ANY TOPIC U GUYS WISH TO KNOW TOPIC ON JUST COMMENT IT BELOW

    ReplyDelete

Post a Comment

popcash